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Motivation

W-silica has a body-centered orthorhombic crys-

tal structure characterized by chains of edge shar-

ing SiO4 tetrahedra interacting only by weak

van der Waals forces. The occurrence of edge-

sharing units also in silicates makes structures ge-

ometrically constrained and results in an energy

penalty. The lack of experimental insight into

the stability of these strained systems makes the-

oretical methods important tools. The knowledge

of the energy penalty presently rests on theo-

retical studies of mainly small clusters which ne-

glect the effect of the condensed environment. We

choose W-silica and α-quartz as model systems

for a calculation of geometries and strain energy

using wavefunction based quantum chemical ab

initio techniques.

Methods

• Finite-Cluster Approach: The total energy

per [Si2O4] unit cell of a single chain of W-silica

can be considered as the energy change between

the subsequent oligomers (the dangling bonds

saturated by two OH and H groups) differing by

a single unit cell:

E = lim
n→∞

∆En

= lim
n→∞

[E(Si2n+2O4n+6H4)−E(Si2nO4n+2H4)].

(1)

Identical unit cells were used as building blocks

for both oligomers and the geometrical optimiza-

tion was restricted to the parameters relevant for

the polymers. Eq. (1) was used for computing the

energy per unit cell employing the HF, MP2, CC

levels of theory.

• Incremental Approach: HF ground state cal-

culations were performed using the periodic code

CRYSTAL 98. Starting from the occupied canon-

ical orbitals of a SCF calculation localized or-

bitals are generated using the Foster-Boys cri-

terion. The correlation per unit cell is expanded

as

Ecorr =
�

i

εi +
�

i<j

∆εij +
�

i<j<k

∆εijk + · · · ,

(2)

where i runs over localized orbitals in the refer-

ence cell and j and k involves all localized orbitals

of the crystal. εi are calculated by correlating

each of the localized orbitals in turn, while others

are kept frozen at the HF level. The ∆εij are de-

fined as ∆εij = εij −(εi +εj), where εij is the cor-

relation energy obtained by correlating orbitals i

and j keeping the rest of the orbitals frozen. We

used MP2 and CCSD for this approach for both

systems.

Results

• Calculations on both systems were performed

with 631G** basis sets.

• Cohesive energy per Si2O4 unit com-

puted by the finite-cluster approach, plot-

ted as a function of the number unit cells n.
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• Geometries of the two-membered rings.

Method c Si-O Si-O-Si O-Si-O

(Å) (Å) (◦) (◦)

SCF1 4.717 1.650 91.28 88.72

MP21 4.744 1.683 89.62 90.38

CCSD1 4.744 1.676 90.09 89.91

CCSD(T)1 4.745 1.680 89.81 90.19

GGA2 4.757 1.678 90.3 89.7

Expt.3 4.720 1.844 79.6 100.4

• In order to compare the stability of W-silica

with respect to α-quartz, we performed correlated

calculations for both systems on the same footing,

i.e., by using the incremental approach truncated

at the same level of correlation increments.

• The experimental geometry was used for

α-quartz, whereas the optimized geometry at

the CCSD level was used for W-silica. Since

electron correlation is a local phenomenon

one may derive Ecorr from a finite model sys-

tem. Usually there is a rapid convergence of the

many-body expansion with respect to the num-

ber of atoms included and the integration error

decreases with r−3. Therefore, we restricted the

expansion of the correlation energy per unit cell

to one- and two-body increments, and included

the interaction between up to second-nearest

neighbor unit cells.

Finite clusters of W-silica and

α-quartz containing 30 and 57

atoms, respectively, with dan-

gling bonds saturated with H

atoms.

• Increments to the correlation energy∗∗∗:

Correlation W-silica α-quartz

treatment MP2 CCSD MP2 CCSD

1-body -.261366 -.336929 -.327725 -.419682

2-body (1NN) -.535584 -.565459 -.692420 -.738037

2-body (2NN) -.016056 -.019333 -.037162 -.044587

• The two-body increments amount to 69% and

65 % of the correlation energy computed by the

MP2 and CCSD methods, respectively.

• Relative energy of a Si2O4 unit for various

systems with respect to α-quartz (in a.u.):

Method System ∆E

HF1 W-silica .156

MP21 W-silica .0547

CCSD1 W-silica .0427

GGA2 W-silica .0452

HF4 H4Si2O6 (C2h) .0849

HF5 H4Si2O6 (C2h) .0673

HF6 H4Si2O2 (D2h) >.1058

(Relative to H8Si4O4)

HF7 H14Si9O25 .0680

Conclusions

• Our HF value seems to be much higher com-

pared to the other HF results. These calculations

were done on small clusters which lack the strain

effect of the environment due to successive edge

sharing units.

• Correlation also seems to play an important

role for the stability of these edge-sharing

systems. In our calculations, by considering

MP2 correlation contributions the stability in-

creased by 65%, whereas upon inclusion of CCSD

correlation increments the stability increased by

73%.

• The most sophisticated correlation approach

used in our study based on CCSD gave a strain

energy of 0.0427 a.u., even less compared to the

one of 0.0452 a.u. obtained by a previous DFT

calculation.

• Edge-sharing SiO4 tetrahedra in (par-

tially) amorphous silicates systems are

possible at a modest energetic expense.
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