Linearized approach to relativistic minimax (LARM) for many-particle systems

Dietmar Kolb, Hongjun Luo and Martin Garcia

Fachbereich Naturwissenschaften der Universität Kassel

Basic relativity problem

Approximation of electron solutions only by projection against negative continuum:

(i) via bound states **boundary conditions**. **Non-linear** in the eigenvalue, **not** energy optimized.

Energy optimized, minimize $I^{(4)} = \langle \psi | H - E | \psi \rangle$:

- (ii) via **pre-projected** relativistic AOs in LCAO. **Linear** in the eigenvalue, semi-convergent, artifacts.
- (iii) via **orthogonality** against a discretized negative continuum from a systematic basis (FEM, STOs, GTOs, wavelets, etc.). **Linear** in eigenvalue, slowly convergent, artifacts.
- (iv) via the relativistic Minimax formalism. Non-linear in eigenvalue.
 Linear approximations to it (Kinetic, T-V and T-V-D balance),
 linear in eigenvalue, weighted discretization of negative continuum.

Minimax principle and its linear approximations

Minimax functional: $I_{\text{minimax}} = \int \frac{\hbar^2 |\hat{L}\psi_L|^2}{2m + (E-V)/c^2} dr^3 + \int (V-E) |\psi_L|^2 dr^3$

Linear functionals:

$$I^{(2)} = \langle \psi | T + V - E | \psi \rangle \quad \text{with}$$

$$\psi = \begin{pmatrix} \psi_L \\ \psi_S \end{pmatrix}, \qquad \psi_L = \sum_j a_j \chi_j^{AO,L}$$

(a) Kinetic Balance (KB): $\psi_S = \sum_j b_j \frac{\hat{L}\chi_j^{AO,L}}{2mc^2}$,

(b) Kinetic and Potential Balance (TVB): $\psi_S = \sum_j b_j \frac{\hat{L}\chi_j^{AO,L}}{E_0 + 2mc^2 - V}$

(c) Kinetic and Potential Defect Balance (TVDB):

$$\psi_S = \frac{\hat{L}\psi_L}{E_0 + 2mc^2 - V} + \sum_j b_j \frac{\hat{L}\chi_j^{AO,L}}{(E_0 + 2mc^2 - V)^2}$$

Figure: Convergence pattern of the ground state energies for different schemes. Scaled H_2^+ distance, normal monopole potential for AOs.

Extension to many-particle systems

SCF calculations (DFT, Dirac-Fock, etc.) for many-body systems. Two basic problems:

- (i) The self consistent potential in the denominator of Minimax, non-local for Dirac-Fock. Solution: Replace $V_{\rm SCF}$ in the denominator of the small component basis for TVB (TVDB) with a suitable fixed potential $V_{\rm fix}$.
- (ii) One has to treat multi-centered integrals like

$$\int V_{\mathsf{SCF}}(\mathbf{r}) \frac{\hat{L}\phi_i^+(\mathbf{r})}{E_0 + 2mc^2 - V_{\mathsf{fix}}(\mathbf{r})} d^3r.$$

Possible solutions:

Numerical integration in 3D (Code available for LCAO). Or re-fit small component basis with given functions.

References

- [1] C. Düsterhöft, D. Heinemann and D. Kolb, Chem. Phys. Lett. 296 (1998) 77.
- [2] O. Kullie and D. Kolb, Eur. Phys. J. D 17 (2001) 167.
- [3] O. Kullie and D. Kolb, Chem. Phys. Lett. **383** (2004) 215.
- [4] H. Zhang, O. Kullie and D. Kolb, J. Phys. B: At. Mol. Opt. Phys.37 (2004) 905.
- [5] H. Zhang, H. J. Luo, J. Kolb, O. Kullie and D. Kolb, *Linear approximation to relativistic Minimax (LARM) applied to a LCAO description of the two-center Coulomb problem*, preprint 2005, submitted J. Phys. B: At. Mol. Opt. Phys.

Table: Spectrum of $J_z = 1/2$ states Th_2^{179+} (R = 2/90 a.u.) up to n = 6. s marks spurious. $E_0 = -4000$ a.u. Smoothed monopole potential for AOs.

No.	4-SP LCAO	KIN-B	T-V-B	T-V-D-B	MINIMAX	FEM
	-36176 s -32671 s -31246 s					
	-24182 s -19086 s					
	-12354 s -10777 s	-15447 s -13673 s				
1	-9510.50	-8940 -8306 s	-9503.79	-9503.5550	-9503.5538	-9504.757
2	-6813.20 -5850 s	-6625	-6814.669	-6814.643698	-6814.643653	-6815.513
3	-4126.48 -4028 s	-4032	-4126.787789	-4126.7877545	-4126.7877544	-4127.891
$egin{array}{c} 4 \\ 5 \end{array}$	-3374.23 -2563.11	-3326 -2706	$-3373.5264 \\ -2563.8015$	$-3373.5258181 \\ -2563.8000129$	$-3373.5258177 \\ -2563.8000122$	$-3374.520 \\ -2564.181$
6	-2457.08	-2547 -2033 s	-2455.313	-2455.309632	-2455.309631	-2455.956
7 8	-2010.01 -1917.072	-2004 -1892	-2010.4425 -1916.4569	$-2010.4417540 \\ -1916.452865$	$-2010.4417536 \\ -1916.452860$	$-2010.664 \\ -1917.124$
9	-1655.06 -1352 s	-1640	-1652.3456	-1652.342807	-1652.342803	-1652.815
$\begin{array}{c} 10\\11 \end{array}$	-1336.46 -1292.28 -1173 s	-1331 -1283	-1336.5135 -1329.9359	-1336.511389 -1329.930772	-1336.511386 -1329.930766	-1336.674 -1330.255
$12\\13\\14$	-1138.42 -1105.162 -1084.36	-1135 -1104.1 -1075	-1138.8245 -1105.03453 -1083.8081	-1138.823465 -1105.034188 -1083.804519	-1138.823463 -1105.034187 -1083.804512	-1138.978 -1105.112 -1084.182
$\begin{array}{c} 15\\ 16\\ 17\end{array}$	-1055.780 -965.69 -819.154	-1055.776 -962 -813	-1055.781472 -966.3824 -818.9833	-1055.7814692 -966.380320 -818 979608	-1055.7814692 -966.380316 -818.979601	-1055.802 -966.6071 -819.1415
± (-010.104	-010	-010.0000	-010.010000	-010.010001	-010.1410

Defect correction formulation

Hybrid bases {AOs, systematic basis}

$$\psi_i^{(k)} = a_{i,0}^{(k)} \sum_j a_{i,j}^{(k-1)} \phi_j^{\text{LCAO}} + \sum_l f_{i,l}^{(k)} N_l$$

- Determine $a_{i,0}^{(k)}, f_{i,l}^{(k)}$ via minimization of I_{minimax} ($I^{(2)}, I^{(4)}$) for fixed $\{a_{i,j}^{(k-1)}\}$.

– Update $a_{i,j}^{(k-1)}$ by orthogonalization of $\{\psi_i^{(k)}\}$.

– The converged solution minimizes $I_{minimax}$ ($I^{(2)}$, $I^{(4)}$) in full hybrid space.

Table: Total energy of the C_2 -molecule for a DKM- calculation with varying numbers of FEM points. The upper index in E_{tot}^b gives the number of atomic basis functions.

points	E_{tot}^{20} [a.u.]	\mathbf{E}_{tot}^{44} [a.u.]	E_{tot}^{56} [a.u.]	\mathbf{E}_{tot}^{FEM} [a.u.]
441 961 1681 2601 3721 LCAO	-74.92 305949 -74.921 30663 -74.9212 2501 -74.921217 50 -74.921216 93 -74.7831	-74.92 293025 -74.921 30492 -74.9212 2490 -74.921217 49 -74.921216 93 -74.8961	-74.92 293934 -74.921 30455 -74.9212 2475 -74.921217 39 -74.921216 84 -74.9047	-74.9 7660961 -74.92 218717 -74.9212 8880 -74.9212 2327 -74.92121 820
exact	-74.9212172 5	-74.9212172 5	-74.9212172 5	-74.9212172 5