# Ab initio treatment of systems with translational symmetry using confined Gaussians



Alejandro Saenz

AG Moderne Optik Institut für Physik



Humboldt-Universität zu Berlin

SPP 1145 meeting, Bonn (05.07.2005)

## **Treatment of periodic systems**

#### **Approaches for finite systems:**

• Very versatile Gaussian-based quantum chemistry codes  $\longrightarrow$  do not use translational symmetry.

## **Treatment of periodic systems**

#### **Approaches for finite systems:**

• Very versatile Gaussian-based quantum chemistry codes  $\longrightarrow$  do not use translational symmetry.

#### **Approaches for infinite periodic systems:**

- Periodic boundary conditions —> Bloch waves.
  - ★ Plane-wave basis sets (and its variants).
  - ★ CRYSTAL: Bloch *ansatz* using Gaussians.
- Cluster calculations (extrapolation to infinite size)

 $\longrightarrow$  method of increments.

Cellular method (based on concept of Wigner and Seitz)
 —> single cell, periodicity encoded in boundary conditions.

## Finite systems with translational symmetry

#### **Motivation:**

- Real systems are not infinite (important example: nanophysics).
- Effects of terminal end groups may be important for properties.
- Defects (may be responsible for the "interesting" physics).
- Assumed infinity may cause trouble (calculation of polarizability etc. see, e.g. project Springborg).

## Finite systems with translational symmetry

#### **Motivation:**

- Real systems are not infinite (important example: nanophysics).
- Effects of terminal end groups may be important for properties.
- Defects (may be responsible for the "interesting" physics).
- Assumed infinity may cause trouble (calculation of polarizability etc. see, e.g. project Springborg).

Natural starting point: standard quantum chemistry approaches.

#### **Question:**

How can the translational symmetry efficiently be used???

## **Basis functions**



Bonn, 05.07.2005

## **Finite systems**

- The wavefunction is expressed in terms of confined Gaussians, non-zero only within a single unit cell.
- Non-zero integrals only for Gaussians in the same cell.
- Interaction with next-neighbour cell Gaussians (but only with them!) through connectivity requirement.
- No new integrals appear when adding a further monomer unit!
- Finiteness, terminal groups, and defects can be considered.
- The locality can be used for an iterative procedure: Update wavefunction in one cell while keeping it fixed in the others, continue with next cell, . . . , start again with first cell, . . . , proceed until full convergence is reached.

## Infinite periodic systems

#### Cellular method for infinite periodic systems:

- Based on Wigner-Seitz approach, uses translational symmetry in real (not k) space.
- Ansatz: Infinite periodicity  $\longrightarrow$  full solution contained in a single cell (volume  $\Omega$ ), periodicity enters via boundary conditions.

Weak formulation (Pask *et al.*, Comp. Phys. Comm. **135**, 1 (2001):

 $\mathbf{H}\,\mathbf{c} = \epsilon_{\vec{k}}\,\mathbf{S}\,\mathbf{c}$ 

 $H_{i,j} = \int_{\Omega} \left[ \nabla \phi_i \cdot \nabla \phi_j - 2i \vec{k} \cdot \phi_i \nabla \phi_j + (V + k^2) \phi_i \phi_j \right] d\Omega$ Note: The  $\phi$  need only be value periodic,  $\phi(\vec{r}) = \phi(\vec{r} + \vec{R})$ .

## **Connectivity problem**

#### Final wavefunction must be continuous across boundaries!

- Note, value continuity  $(C^0)$  at the boundaries is sufficient!
- As Pask *et al.* have shown: for the cellular method value periodicity is sufficient.

#### **Possible solutions:**

- For cell-centred Gaussians value continuity and periodicity are relatively easy to fulfill (but this results in strong limitation).
- Use of compact atom-centred and diffuse cell-centred Gaussians.
- Add polynomial basis functions (at mirror positions).
  [Identical geometrical shape, no difficult new integrals.]

## The key integrals

**Required:** Calculation of the integrals within the cell volume  $\Omega$  $H_{i,j} = \int_{\Omega} \phi_i \hat{H} \phi_j d\Omega$  and  $S_{i,j} = \int_{\Omega} \phi_i \phi_j d\Omega$ 

where the volume boundaries may be finite or infinite.

#### **Preliminary work:**

- All integral types (overlap, kinetic energy, nuclear attraction, and electron repulsion) have been formulated and tested.
- Approach is limited to orthogonal cells (at most orthorhombic).
- Worst case (all boundaries finite) was tested, partly infinite boundaries (easier!) and other efficiency issues have still to be addressed.

## <u>Goals:</u>

Implement and test performance of three methods (starting with 1D periodicity [polymers] and pseudopotentials, DFT, or RHF):

#### Method 1:

- Use global Gaussians, but implement translational symmetry on the level of integral calculation.
- Analyse the unit-cell contributions to properties.

#### Method 2:

Combine the advantages of Gaussians (describing molecular orbitals) with the advantages of finite-element approaches.

**2A:** Use spatially confined Gaussians for finite periodic systems.

**2B:** Use spatially confined Gaussians for infinite periodic systems.

## Connectivity (II)



Bonn, 05.07.2005

## Method 1: Basics

- Consider a polymer consisting of 5 monomers, A to C, where (in general) A, C  $\neq$  B (see Fig. 1).
- The space may be divided into 5 (semi-infinite) subspaces.
- The Hamiltonian can be partitioned into contributions from those spatial volumes.
- This is a consequence of the additivity property of integrals.
- Every integral (example: one-electron operator  $\hat{O}$ ) may be written:

$$O_{i,j} = \sum_{m=1}^{5} I_{i,j}^{(m)} = \sum_{m=1}^{5} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{z_{m-1}}^{z_m} \phi_j^* \hat{O} \phi_i \, dV \quad \text{where} \quad \begin{aligned} z_0 &= -\infty \\ z_5 &= +\infty \end{aligned}$$

## **Method 1: Discussion**

- Many integral pieces  $I_{i,j}^{(m)}$  will identically occur for different integrals  $\longrightarrow$  no recalculation is needed.
- The gain should be most pronounced when considering sequences of polymers with N, N+1, N+2, . . . monomers.
- Applicability to finite systems (including the explicit consideration of terminal groups and possible defects).
- Could also be used for infinite systems (cluster calculations).
- Of interest for orbital localization or analysis of properties (dipole moments etc.; also using, e.g., cluster-calculation wavefunctions)?
- Efficiency of  $I_{i,j}^{(m)}$  calculation in comparison to standard integrals and index-based consideration of translational symmetry?