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Treatment of periodic systems

Approaches for finite systems:

• Very versatile Gaussian-based quantum chemistry codes

−→ do not use translational symmetry.
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Treatment of periodic systems

Approaches for finite systems:

• Very versatile Gaussian-based quantum chemistry codes

−→ do not use translational symmetry.

Approaches for infinite periodic systems:

• Periodic boundary conditions −→ Bloch waves.

? Plane-wave basis sets (and its variants).

? CRYSTAL: Bloch ansatz using Gaussians.

• Cluster calculations (extrapolation to infinite size)

−→ method of increments.

• Cellular method (based on concept of Wigner and Seitz)

−→ single cell, periodicity encoded in boundary conditions.
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Finite systems with translational symmetry

Motivation:

• Real systems are not infinite (important example: nanophysics).

• Effects of terminal end groups may be important for properties.

• Defects (may be responsible for the “interesting” physics).

• Assumed infinity may cause trouble

(calculation of polarizability etc. see, e. g. project Springborg).
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Finite systems with translational symmetry

Motivation:

• Real systems are not infinite (important example: nanophysics).

• Effects of terminal end groups may be important for properties.

• Defects (may be responsible for the “interesting” physics).

• Assumed infinity may cause trouble

(calculation of polarizability etc. see, e. g. project Springborg).

Natural starting point: standard quantum chemistry approaches.

Question:

How can the translational symmetry efficiently be used???
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Basis functions

H = 

H = 
0

0

H = 
0

0

Global basis functions (Gaussians):

Local basis functions (FEM):

Confined Gaussians:
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Finite systems

• The wavefunction is expressed in terms of confined Gaussians,

non-zero only within a single unit cell.

• Non-zero integrals only for Gaussians in the same cell.

• Interaction with next-neighbour cell Gaussians (but only with

them!) through connectivity requirement.

• No new integrals appear when adding a further monomer unit!

• Finiteness, terminal groups, and defects can be considered.

• The locality can be used for an iterative procedure:
Update wavefunction in one cell while keeping it fixed in the others,

continue with next cell, . . . , start again with first cell, . . . , proceed

until full convergence is reached.
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Infinite periodic systems

Cellular method for infinite periodic systems:

• Based on Wigner-Seitz approach, uses translational symmetry in

real (not k) space.

• Ansatz: Infinite periodicity −→ full solution contained in a single

cell (volume Ω), periodicity enters via boundary conditions.

Weak formulation (Pask et al., Comp. Phys. Comm. 135, 1

(2001):
H c = ε~k Sc

Hi,j =
∫

Ω

[∇φi · ∇φj − 2i~k · φi∇φj + (V + k2) φiφj ] dΩ

Note: The φ need only be value periodic, φ(~r ) = φ(~r + ~R).
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Connectivity problem

Final wavefunction must be continuous across boundaries!

• Note, value continuity (C0) at the boundaries is sufficient!

• As Pask et al. have shown: for the cellular method value

periodicity is sufficient.

Possible solutions:

• For cell-centred Gaussians value continuity and periodicity

are relatively easy to fulfill (but this results in strong limitation).

• Use of compact atom-centred and diffuse cell-centred Gaussians.

• Add polynomial basis functions (at mirror positions).

[Identical geometrical shape, no difficult new integrals.]
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The key integrals

Required: Calculation of the integrals within the cell volume Ω

Hi,j =
∫

Ω

φi Ĥ φj dΩ and Si,j =
∫

Ω

φi φj dΩ

where the volume boundaries may be finite or infinite.

Preliminary work:

• All integral types (overlap, kinetic energy, nuclear attraction, and

electron repulsion) have been formulated and tested.

• Approach is limited to orthogonal cells (at most orthorhombic).

• Worst case (all boundaries finite) was tested, partly infinite boun-

daries (easier!) and other efficiency issues have still to be addressed.
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Goals:

Implement and test performance of three methods (starting with 1D

periodicity [polymers] and pseudopotentials, DFT, or RHF):

Method 1:

• Use global Gaussians, but implement translational symmetry on the

level of integral calculation.

• Analyse the unit-cell contributions to properties.

Method 2:

Combine the advantages of Gaussians (describing molecular
orbitals) with the advantages of finite-element approaches.

2A: Use spatially confined Gaussians for finite periodic systems.

2B: Use spatially confined Gaussians for infinite periodic systems.
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Connectivity (II)

R R R
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Method 1: Basics

• Consider a polymer consisting of 5 monomers, A to C, where (in

general) A, C 6= B (see Fig. 1).

• The space may be divided into 5 (semi-infinite) subspaces.

• The Hamiltonian can be partitioned into contributions from those

spatial volumes.

• This is a consequence of the additivity property of integrals.

• Every integral (example: one-electron operator Ô) may be written:

Oi,j =
5∑

m=1

I
(m)
i,j =

5∑
m=1

∞∫
−∞

∞∫
−∞

zm∫
zm−1

φ∗j Ôφi dV where
z0 = −∞
z5 = +∞
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Method 1: Discussion

• Many integral pieces I
(m)
i,j will identically occur for different integrals

−→ no recalculation is needed.

• The gain should be most pronounced when considering sequences

of polymers with N , N + 1, N + 2, . . . monomers.

• Applicability to finite systems (including the explicit consideration

of terminal groups and possible defects).

• Could also be used for infinite systems (cluster calculations).

• Of interest for orbital localization or analysis of properties (dipole

moments etc.; also using, e. g., cluster-calculation wavefunctions)?

• Efficiency of I
(m)
i,j calculation in comparison to standard integrals

and index-based consideration of translational symmetry?
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