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Treatment of periodic systems

Approaches for finite systems:

Very versatile Gaussian-based quantum chemistry codes
—— do not use translational symmetry.
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Treatment of periodic systems

Approaches for finite systems:

Very versatile Gaussian-based quantum chemistry codes

—— do not use translational symmetry.

Approaches for infinite periodic systems:

Periodic boundary conditions — Bloch waves.

x Plane-wave basis sets (and its variants).
* CRYSTAL: Bloch ansatz using Gaussians.

Cluster calculations (extrapolation to infinite size)

—— method of increments.

Cellular method (based on concept of Wigner and Seitz)
— single cell, periodicity encoded in boundary conditions.
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Finite systems with translational symmetry

Motivation:

Real systems are not infinite (important example: nanophysics).
Effects of terminal end groups may be important for properties.
Defects (may be responsible for the “interesting” physics).

Assumed infinity may cause trouble
(calculation of polarizability etc. see, e. g. project Springborg).
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Finite systems with translational symmetry

Motivation:

Real systems are not infinite (important example: nanophysics).
Effects of terminal end groups may be important for properties.
Defects (may be responsible for the “interesting” physics).

Assumed infinity may cause trouble
(calculation of polarizability etc. see, e. g. project Springborg).

Natural starting point: standard quantum chemistry approaches.

Question:

How can the translational symmetry efficiently be used???
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Basis functions

Global basis functions (Gaussians):
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Local basis functions (FEM):
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Confined Gaussians:
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Finite systems

The wavefunction is expressed in terms of confined Gaussians,
non-zero only within a single unit cell.

Non-zero integrals only for Gaussians in the same cell.

Interaction with next-neighbour cell Gaussians (but only with
them!) through connectivity requirement.

No new integrals appear when adding a further monomer unit!
Finiteness, terminal groups, and defects can be considered.

The locality can be used for an iterative procedure:

Update wavefunction in one cell while keeping it fixed in the others,
continue with next cell, . . ., start again with first cell, . . . , proceed
until full convergence is reached.
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Infinite periodic systems

Cellular method for infinite periodic systems:

Based on Wigner-Seitz approach, uses translational symmetry in
real (not k) space.

Ansatz: Infinite periodicity — full solution contained in a single
cell (volume (), periodicity enters via boundary conditions.

Weak formulation (Pask et al.,, Comp. Phys. Comm. 135, 1

(2001):
Hc = EESC

H,, = /Q V-V — 20KV, + (V + k) iy ] A0

Note: The ¢ need only be value periodic, ¢(7) = &(F+ R).
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Connectivity problem

Final wavefunction must be continuous across boundaries!

Note, value continuity (C') at the boundaries is sufficient!

As Pask et al. have shown: for the cellular method value

periodicity is sufficient.

Possible solutions:

For cell-centred Gaussians value continuity and periodicity
are relatively easy to fulfill (but this results in strong limitation).

Use of compact atom-centred and diffuse cell-centred Gaussians.

Add polynomial basis functions (at mirror positions).
[Identical geometrical shape, no difficult new integrals.]
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The key integrals

Required: Calculation of the integrals within the cell volume (2

Hf,;,j = / ¢Zﬁ¢jd9 and S’i,j — / ¢z¢de
Q Q

where the volume boundaries may be finite or infinite.

Preliminary work:

All integral types (overlap, kinetic energy, nuclear attraction, and
electron repulsion) have been formulated and tested.

Approach is limited to orthogonal cells (at most orthorhombic).

Worst case (all boundaries finite) was tested, partly infinite boun-
daries (easier!) and other efficiency issues have still to be addressed.
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Goals:

Implement and test performance of three methods (starting with 1D
periodicity [polymers] and pseudopotentials, DFT, or RHF):

Method 1:

Use global Gaussians, but implement translational symmetry on the
level of integral calculation.

Analyse the unit-cell contributions to properties.

Method 2:

Combine the advantages of Gaussians (describing molecular
orbitals) with the advantages of finite-element approaches.

2A: Use spatially confined Gaussians for finite periodic systems.

2B: Use spatially confined Gaussians for infinite periodic systems.
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Connectivity (1)

-—R =—R -=—R
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Method 1: Basics

Consider a polymer consisting of 5 monomers, A to C, where (in
general) A, C # B (see Fig.1).

The space may be divided into 5 (semi-infinite) subspaces.

The Hamiltonian can be partitioned into contributions from those
spatial volumes.

This is a consequence of the additivity property of integrals.

Every integral (example: one-electron operator C)) may be written:

Zm,

5 5 oo 00
_E: (m)_E: A 20 = —O0
Oi,j — Iz’,j = / / / gbj quz dV  where % oo

— 00 — 00 Zym—1
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Method 1: Discussion

Many integral pieces Iz.(?) will identically occur for different integrals
—— no recalculation is needed.

The gain should be most pronounced when considering sequences
of polymers with N, N +1, N + 2, ... monometrs.

Applicability to finite systems (including the explicit consideration
of terminal groups and possible defects).

Could also be used for infinite systems (cluster calculations).

Of interest for orbital localization or analysis of properties (dipole
moments etc.; also using, e. g., cluster-calculation wavefunctions)?

Efficiency of ]i(?) calculation in comparison to standard integrals
and index-based consideration of translational symmetry?
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