next up previous
Next: Research interest / own Up: Introduction Previous: Introduction

The Ansatz

Toggle Background


The coupled cluster wave function is given by

|$\displaystyle \Psi_{{\rm CC}}^{}$$\displaystyle \rangle$ = e$\scriptstyle \hat{T}$|$\displaystyle \Psi_{0}^{}$$\displaystyle \rangle$ (12)

with $ \hat{T}$ = $ \hat{T}_{1}^{}$ + $ \hat{T}_{2}^{}$ +... and
$\displaystyle \hat{T}_{1}^{}$ = $\displaystyle \sum_{{ia}}^{}$tia$\displaystyle \hat{a}_{a}^{\dagger}$$\displaystyle \hat{a}_{i}^{}$  
$\displaystyle \hat{T}_{2}^{}$ = $\displaystyle \sum_{{ijab}}^{}$tijab$\displaystyle \hat{a}_{a}^{\dagger}$$\displaystyle \hat{a}_{b}^{\dagger}$$\displaystyle \hat{a}_{i}^{}$$\displaystyle \hat{a}_{j}^{}$  
  $\displaystyle \vdots$    

the cluster operator. Inserting (13) into the Schrödinger equation we obtain

$\displaystyle \hat{H}$e$\scriptstyle \hat{T}$|$\displaystyle \Psi_{0}^{}$$\displaystyle \rangle$ = Ee$\scriptstyle \hat{T}$|$\displaystyle \Psi_{0}^{}$$\displaystyle \rangle$. (13)

Multiplying by e-$\scriptstyle \hat{T}$ yields

e-$\scriptstyle \hat{T}$$\displaystyle \hat{H}$e$\scriptstyle \hat{T}$|$\displaystyle \Psi_{0}^{}$$\displaystyle \rangle$ = E|$\displaystyle \Psi_{0}^{}$$\displaystyle \rangle$. (14)

Projecting (15) onto $ \langle$$ \Psi_{0}^{}$| and substituted determinants we get non-linear equations for the energy E and the amplitudes tia, tijab, ... respectively.

Michael Hanrath 2008-08-13