next up previous
Next: Projections Up: Research interest / own Previous: MRexpT Ansatz

Cluster Operator Parameterization

Toggle Background


In search for a state specific ansatz we recognize that the number of reference coefficients matches the number of $ \mathbb {P}$ projections naturally ( ord({ci}) = ord($ \mathbb {P}$)). Analyzing the remaining equation ord({tj}) = ord($ \mathbb {Q}$) we state that for every tj there must be a corresponding |$ \beta$$ \rangle$ $ \in$ $ \mathbb {Q}$. Thus as a first guess we try to use exactly this |$ \beta$$ \rangle$ to index the amplitudes t and write

tj : = t|$\scriptstyle \beta$$\scriptstyle \rangle$ (18)

with the sign rule

t-|$\scriptstyle \beta$$\scriptstyle \rangle$ = - t|$\scriptstyle \beta$$\scriptstyle \rangle$ (19)

applied. In order to insure potential completeness we introduce the phase factor $ \varphi$(z) = e-i arg z,  z $ \in$ $ \mathbb {C}$ according to

|$\displaystyle \Psi$$\displaystyle \rangle$ = $\displaystyle \sum_{{\mu}}^{}$c$\scriptstyle \mu$exp$\displaystyle \left(\vphantom{\varphi (c_\mu) \sum_{\hat \tau_i(\mu) \in \mathbb{T}_\mu} \!\!\! t_{\hat \tau_i(\mu) \vert\mu\> } \hat \tau_i(\mu) }\right.$$\displaystyle \varphi$(c$\scriptstyle \mu$)$\displaystyle \sum_{{\hat \tau_i(\mu) \in \mathbb{T}_\mu}}^{}$t$\scriptstyle \hat{\tau}_{i}$($\scriptstyle \mu$)|$\scriptstyle \mu$$\scriptstyle \rangle$$\displaystyle \hat{\tau}_{i}^{}$($\displaystyle \mu$)$\displaystyle \left.\vphantom{\varphi (c_\mu) \sum_{\hat \tau_i(\mu) \in \mathbb{T}_\mu} \!\!\! t_{\hat \tau_i(\mu) \vert\mu\> } \hat \tau_i(\mu) }\right)$|$\displaystyle \mu$$\displaystyle \rangle$. (20)

It is crucial to insert the phase factor inside the exponential and not outside.

Michael Hanrath 2008-08-13